
D A R I O  B R A G A  A N D  F A B R I Z I A  G R E P I O N I  383 

principle (or density rule) (Kitaigorodsky, 1973) this 
latter isomer is expected to be the more stable form. It 
should be pointed out, however, that the density rule 
holds, in principle, only for small hydrocarbon species. 
It seems that the only conclusion one can draw to 
explain the existence of both isomers is that the 
differences in molecular and packing energies for the 
two forms must cancel (i.e. be approximately equal and 
of opposite sign). This behaviour leads to the role 
played by the aforementioned 'crystal forces', which 
appear to be in competition with ligand-packing 
optimization around the metal frame. Slightly different 
crystallization conditions may suffice in altering the 
subtle energy balance between these two factors in 
determining the final stereogeometry. 

The authors wish to thank Professor A. Gavezzotti  
for many useful discussions and for providing the 
O P E C  computer program, and Dr  T. F. Koetzle for his 
careful review of the manuscript. 
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Abstract 

An extension of  the rigid-body model which includes 
intramolecular translational oscillations is presented. 
Some symmetry aspects are discussed, especially for 
cases where several symmetrically equivalent groups in 
a molecule perform coupled translational oscillations. 
The relationship between the general model and 
difference displacement parameters A U  between pairs 
of  atoms along their internuclear vector is elaborated. 

0108-7681/89/040383-08503.00 

Some examples in the field of transition-metal com- 
plexes are given. 

Introduction 

Atomic displacement parameters,  determined routinely 
with almost every crystal structure analysis, contain 
information on atomic motion and on atomic disorder 
in the crystal. A picture of molecular  motion (and 
disorder) would, in many instances, be more informa- 
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tive than the long fists of atomic anisotropic dis- 
placement parameters (ADP's) usually provided 
(although often not published), just as a molecular 
diagram showing bond distances and angles is more 
revealing than the fists of coordinates from which it is 
derived. A distinction between atomic motion and 
disorder is usually not possible from diffraction 
measurements at a single temperature. However, many 
kinds of disorder attenuate Bragg intensities in pro- 
portion to the mean-square displacements of the atoms 
perpendicular to the Bragg plane as do atomic motions. 
Such disorder can therefore be modelled by ADP's 
(Dunitz, Schomaker & Trueblood, 1988). We carefully 
use the term ADP, while referring generally to atomic 
or molecular 'motions', whether or not the actual nature 
of the displacements has been established. 

Interpretation of ADP's in terms of molecular 
motion is beset with a major difficulty: while ADP's for 
individual atoms can be determined from Bragg 
intensities, all correlations of motion between atoms 
remain unknown (Scheringer, 1987). To make up for 
this deficiency any interpretation of ADP's in terms of 
molecular and intramolecular motion has to borrow 
heavily from other experiments, from theory, and often 
from chemical common sense. Cruickshank (1956), for 
example, argued that in essence aromatic hydro- 
carbons may be considered as rigid bodies undergoing 
librational and translational oscillations in the crystal 
and showed how mean-square amplitudes for such 
motions can be determined from ADP's. Of course, the 
very concept of a rigid body introduces correlations 
between atomic motions. Schomaker & Trueblood 
(1968) showed that Cruickshank's model is valid only 
for molecules with inversion symmetry and generalized 
it to molecules with any symmetry. They introduced a 
coupling tensor S along with Cruickshank's translation 
and libration tensors T and L to express the correlation 
between translational and rotational oscillations. The 
TLS analysis showed that ADP's depend on 
differences S u - S . i  j of the diagonal elements of S, 
implying, in turn, that the absolute values of the 
molecular-motion parameters Su cannot be determined 
from ADP's. Again, this difficulty arises from incom- 
plete knowledge about the correlation of atomic 
motions. 

The model of molecular rigid-body motion has been 
extended by Johnson (1970a) and by Schomaker & 
Trueblood (1984). They analysed the cases of rigid- 
body motion combined with one or more large- 
amplitude internal rotations. In their model, a rigid 
group (RG), attached to a rigid frame (MAIN), is 
assumed to rotate about a specified axis, usually the 
chemical bond connecting RG to MAIN. Correlation 
between atomic motions is introduced through the 
definitions of RG, MAIN and the axis of rotation. Once 
again, however, the assumed correlations are in- 
sufficient to determine all parameters of the motion. In 

general, the mean-square internal rotation amplitude 
(~o 2) cannot be obtained, only its sum with the 
quadratic correlation 2(~0ll) between overall and 
internal rotation in the direction of the internal rotation 
axis can. 

These and other aspects of interpreting ADP's have 
been reviewed recently by Dunitz, Schomaker & 
Trueblood (1988). In their article the emphasis is on 
organic molecules, for which rigid-body motion and 
internal rotation are the most important contributions 
to large-amplitude motion. Our own involvement with 
inorganic crystal chemistry, e.g. Jahn-Teller deforma- 
tions and spin equilibria, made it desirable to have a 
model combining rigid-body motion with internal 
translational motion. The molecule is divided as before 
into one or more RG's attached to MAIN. These 
groups perform translational oscillation along a speci- 
fied direction, usually along the bond connecting RG to 
MAIN. 

In this paper we first give an analysis of such motion 
and compare it with that for internal rotation. Next, we 
consider symmetry aspects, especially where several 
symmetrically equivalent RG's perform coupled 
translational oscillation. In the third section, 
approximations to the general model are discussed. The 
relationship between the general model and difference 
displacement parameters A U  between pairs of atoms 
along their internuclear vector are treated in the fourth 
section. Some applications and examples are sum- 
marized in the concluding part. 

Analysis of motion 

The instantaneous displacement of an atom in the rigid 
frame of a molecule (MAIN) is 

u = ( l x  r ) + t ,  (1) 

that of an atom in an ottached rigid group (RG) is 

u = ( l x  r )+  t + Y gi, (2) 

t is the translational, (I x r) the rotational displace- 
ment; #~ is the displacement along an internal coordin- 
ate i. 

The mean-square displacement amplitudes are (for 
one internal motion) 

u u = - -  (r x IIx r ) - - ( r  × It)+ (ti x r)+ tt 

-- (r × I/t) + (/tl × r) + ~ + #t +/#t ,  (3) 

where symbols of the type xx represent expectation 
values of a dyadic product, i.e. (xi) .  

In the conventional U, T, L, S notation of Schomaker 
& Trueblood (1968) supplemented by symbols for 
terms involving g, the above expression abbreviates to 

U ' - - - - ( r x  L x r ) - - ( r x  S ) + ( S ×  r ) + T  

- - ( r ×  Mi)+( l~ l ix  r ) + M  t+l~ l  t + M  (4) 
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(S is the transpose of S). For an internal translational 
oscillation the contribution to the instantaneous dis- 
placement is simply 

u = r  (5) 

and 

Ml(Z') : h" 

Mt ( z )  = tz" 

M(z) = zz. (6) 

Certain aspects of these equations become more 
transparent in an orthogonal coordinate system with 
one axis parallel to r, the other two perpendicular to r. 
If the components of 1, t and r are taken as 

I =  (ll ±, 12 ±, l") 

t = (tl ±, t2 ±, t") 

z = (O,O,r), (7) 

then the M-type matrices are 

o o 

MI(r)= 0 0 </2±r>/ 
/ 

0 0 (/"r> .] 

o o 

M t ( z ' ) =  0 0 ( t 2 L r > /  
/ 

0 0 (t"r> J 

1 M ( r ) =  0 0 

o (8) 

The matrix Ml(r)= Ir expresses the coupling between 
overall rotation and internal translation, the matrix 
Mt( 0 = tr the coupling between overall and internal 
translation. For an RG consisting of a single atom, the 
origin of the coordinate system may be chosen to 
coincide with this atom. In this case, Mi is in- 
determinate because r = 0 and only the s u m  M t + 
l~lt+ M can be obtained, i.e. the quantities (tl±r),  
( t  2 it) and 2(t "r) + (r2). For a sufficiently general RG 
the elements of M t can also be determined, but 
M t+~,l  t + M ,  i.e. 2 ( t " r ) + ( r 2 ) ,  can still not be 
separated. This kind of indeterminacy is analogous to 
that involving the diagonal elements of S, as mentioned 
in the Introduction. 

These results for internal translation show a one- 
to-one correspondance with those for internal rotation 
with instantaneous displacement 

# = (~p x r), (9) 

where ~0 is the axis of internal rotation and r is the 
position vector of an atom in the RG relative to an 
arbitrary origin on (0. With definitions of axes and 

components of I, t and ~ analogous to those of I, t and z 
above [(7)], the mean-square displacement matrices 
involving tp are 

0 0 (l~±~)1 
MI((O) : 0 0 <121q~> 

0 0 (l"~o> 

o o 

Mt(q~ ) : 0 0 <t2±(o>/  
/ 

0 0 <t"~p> ] [ooo 1 
M(~p)= 0 0 0 

o o (lO) 

The contribution to U from internal rotation is 
[Mt(~0 ) x r] - - [ r  x 1VIt(t0 )1 - r x [M,(~0) + 1Vll(~0) + 
M(q~)] x r and even for a general RG the quantities 
2(l"~0> + (tp2> cannot be obtained separately (Dunitz, 
Schomaker & Trueblood, 1988), the indeterminacy 
being analogous to that in 2(t"r> + (r2>. 

As we have seen, for one-atom RG's not all six 
independent parameters of internal motion can be 
determined. This applies also for certain other RG's 
with symmetry in the bond distances. These indeter- 
minacies are tied to geometric relationships among the 
position vectors and are analogous to the problems of 
rigid-body analysis for molecules in which the atomic 
positions define a conic section (Cruickshank, 1956; 
Schomaker & Trueblood, 1968; Johnson, 1970b, 
1980). We have been unable to find a general procedure 
allowing a systematic identification of such patho- 
logical RG's. Instead, we had to analyse each new type 
of RG individually. For this purpose, it is convenient to 
use coordinate systems that reflect as well as possible 
the (approximate) symmetry in the distances and angles 
of the RG. (As an exercise the interested reader may try 
to show that for a two-atom RG in which (0 intersects 
the midpoint of the interatomic vector at a right angle, 
only five independent internal-motion parameters may 
be determined). 

For simplicity, the discussion so far has been based 
on a very Special coordinate system. Note, however, 
that the transformation properties of M tensors with 
respect to coordinate rotation and shift of origin are the 
same as for T, L and S tensors (Schomaker & 
Trueblood, 1968). A shift of origin changes T and S but 
leaves U and L unaltered. If To~ d and Sol d refer to rol d, 
then a shift s of origin such that ro~ d = r, ew + s leads to 

Lne w = Lol d 

Sne w = Sol d --  (Lol d X $) 

The ~ = Tol d --  (s  X Sold) + (Sol d X S) 

- (s x Lo,d x s). (11) 
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Usually an s is chosen which minimizes the trace of 
The w [tr(Tnew)] and symmetrizes S,ew. It is 

s = [tr(Lo~a)l- Lotd]-~ (1 X t)o~d, (12) 

where 1 is a unit matrix. For an RG undergoing internal 
translational oscillation, an analogous condition mini- 
mizes the trace of all translational motions [tr(T + 
Mt(z') + l~lt(z') + M(r)oJ ,  

s = [tr(Lo~d)l-- Lord] -x ((1 X t>o~d + (1 × r)o,O). (13) 

Sometimes it is convenient to refer M~(r), Mt(r ) and 
M(r) to an arbitrarily oriented orthogonal coordinate 
system. They then take the following form 

</lZ'>Ct </1 ~'>~ </lr>Y 1 
MI(O = 1~= <12r>cx <12r>/? <12r>y [ 

! 

<13r>a <13r>/~ <13r>Y/ 

Mt(r ) + 1Vlt(z" ) + M(z') = tr + rt + rr 

2<tlZ>Ct <t,r>fl <t,r>y 

+<tzr>a +<t3r>a 

2<tzr>fl <ter>~' 

+(t3r>fl 
+<~>/~ +<~>~ 

(t3r>fl 2(t3r>)' 

+(t2r>y 

+(r2)fr +(r2>f 

<t2r>ct 

+(hr>fl  

<t3z'>ct 

+(tlr>~' 

(14) 

a, ~, ~ are the direction cosines of the internal 
translation direction r with respect to the orthogonal 
but otherwise arbitrarily oriented axes. The six inde- 
pendent quantities corresponding to (l~lr),  (121r), 
( l" r ) ,  ( t l±r) ,  (t2±r), ( t" r )  above are now ( l i t ) ,  (/2r), 
(13r), ( t i t )  + a(r2)/2, (t2r) + fl(r2)/2, (/3 r) + ~(r2)/2. 

Symmetry 

The tensors Mt, Mt and M are subject to symmetry 
restrictions that are analogous to those for U, T, S and 
L themselves. For an RG with a given symmetry, lr and 
~t obey the same restrictions as an S tensor of a 
molecule with the same symmetry. For tr, rr, ltp and tp~, 
the restrictions are those for U, T or L tensors. Details 
have been listed by Schomaker & Trueblood (1968). 

For a molecule with site-symmetry group G = {g~, 
g2, g~, gn), there may be several symmetrically related 
RG's.  Let RG~ be related to RG~ through the symmetry 
operation g~. The internal motions of the RG's  can be 
classified according to the irreducible representations Fj 
of G. Each Fj determines a specific pattern of 
correlations among the internal motions of individual 

RG's. If the instantaneous displacement of RG~ in a 
symmetry displacement coordinate transforming as Fj 
is #1, then that of RGi is / t i = h i j  lap where h U is 
proportional to the element of the projection operator 
pi(Fj) corresponding to gi. (The proportionality factor is 
n/l~, where n is the order of G and lj is the degeneracy of 
Fr) The contribution of internal motion to the U's of the 
two RG's  are 

Ul(int.) = - (r 1 x it) + (rl × rl) + tr + rt + rr (15) 

and, respectively, 

Ui(int.) = - [ ( g i r l )  x lrt~u) + (hod x (gira)] 

+ (trt7 U) + (hurt) + (h~/rrtTu). (16) 

Back transformation of U~(int.) yields the identity 

U~(int.) = gi-' U/(int.)(g~) • (17) 

Comparison of individual terms on the left and right of 
(17) can provide information on some of the coupling 
terms in lr and tr. 

Consider the molecule R G , - M A I N - R G 2  with 
G = {1,1} as an example. For an internal asymmetric 
stretching motion, hij is the identity matrix 1 and for a 
symmetric stretching motion it is the inversion matrix ]. 
For the asymmetric stretch, we find 

lr = - I t  1 = 0 

tr = tr  1 = tr 

r r =  1 rr  I = rr. (18) 

The couplings ir are zero by symmetry, the couplings tr 
are not. For the symmetric stretch, 

Ir = - I t  ] = lr 

t r =  t r ]  = 0 

r r =  i r r i =  rr. (19) 

Couplings Ir are generally different from 0, couplings tr 
are zero. 

These results could have been found more easily. The 
overall libration ! is gerade with respect to ], the overall 
translation t is ungerade, and the internal translation r 
is ungerade and gerade, respectively. This leads directly 
to the above zero or nonzero expectation values (as well 
as to S = 0). Analogous results for other symmetries 
are obtained most easily by using the explicit forms of 
It, tr and rr given above [ (8) or (14)]. The same general 
procedure can be applied to internal rotation, i.e. Ml(Cp) 
and Mt(tp) and, indeed, to any combination of internal 
displacement coordinates, i.e. (#i /~j). 

Approximate models 

In cases where a chemically symmetric molecule 
occupies a general position in the crystal (with site 
symmetry 1) it is often a good approximation to assume 
that the symmetry of the internal motion (hij) is 
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preserved, if the symmetry of the geometrical structure 
is at least approximately preserved (gi). In such cases 
the symmetry relationship between U~(int.) and Ui(int.) 
[(17)] no longer holds. This is because the overall 
motion (T, L, S) and the couplings to internal motion 
(tr, 11:) do not, in general, show the approximate 
symmetry. 

Nevertheless, the information on couplings is still 
available. With the approximate relationships 

r i ~_ gir~ 

r(group i) _ hij r(group 1), (20) 

we obtain 

Ul(int.) + Ui0nt.) = - (r 1 x It) T- [(glrx) x l~ffij] 

+ (1:1 x rl) + [hijzt x (girl)] 

+ tr + (tr~'ij) + ~ ___ (h i jn)  

+ rr + (hiirrfiu). (21) 

In terms of the above example the result is, for hu= 1, 
gi = 1, 

U~(int.)- UE(int.)= -- 2(r 1 × It) + 2(fl X rl) 

Ul(int.) + UE(int.) = 2tr + 2zt + 2rr (22) 

and, for hij = i ,  gi = i,  
Ul( in t . ) -  UE(int.) = 2tr + 2tt 

Ul(int.) + UE(int.) = - 2 ( r  I × lz) + 2(rl × rl) 
+ 2zr. (23) 

The correlations between overall and internal motion 
are often small and can be neglected. The internal 
motion is then described by a single parameter, e.g. 
l ' ~ ' :  ( t  "E) for internal translation and (0(0= <(02> for 
internal rotation. For internal rotation this simplified 
model is known as the Dunitz-White model (Dunitz & 
White, 1973). Both approximations are simplified 
variants of Johnson's (1970a) more general segmented- 
body model. They specifically exclude correlations 
between overall rigid-body motion and internal rigid- 
group motion as does the segmented-body model. 

As mentioned by Dunitz, Schomaker & Trueblood 
(1988), ((0E) derived from experimental U's within the 
framework of the simplified model is meaningful only if 
((02) is large compared with ((l,)Z). The same applies to 
( r  2) in relation to ((tll)2), as may be seen from the 
following considerations. After rewriting 

( t"r)  = c [<T2><(tll)2)] 1/2, (24) 

where c is the correlation coefficient between internal 
and overall translation, it may be shown that if A is 
the determinable sum (r  E) + 2(t"r)  then the following 
relationship holds: 

+ [(rE)/(( t")E)lU2=--c + [c E + A/((t")E)] lIE. (25) 

For a physically meaningful model, the right-hand side 
of (25) must be real, i.e. A/((tl l)  E) _>-1 must hold. If 
A = - ( ( t " )  E) then c = - 1  and (r  E) = ((tll)E); if A >> 

((tll) 2) then c ~_ 0 and (r  z) _ A .  Finally, ifA _ 0 then 
(r  z) ~_ 4c2((t")z), i.e. ( r  e) may be anything between 0 
and 4((t")2). 

The ratio A/(( t" )  z) depends on the choice of origin 
for the coordinate system [(11)-(13)]. An upper limit 
for A/(( t")  z) may be obtained by choosing an origin 
that maximizes tr[rr + tz + rt - (s x It) + (ri x s)]/tr[T 
-- ( s x S )  + .(Sx s) - ( sx  L x  s)]. For l z = 0 ,  
A/((tJI) 2) has a maximum if tr(T) is minimal [(12)]. If 
the components of lz are much smaller than those of S, 
the value of A/((tH) 2) obtained with minimal tr(T) is 
still an acceptable approximation to the upper limit of 
A/((t")2).  

A U va lues  

A U values evaluated along internuclear vectors have 
been used to test for the non-rigidity of molecules in 
crystals (Rosenfield, Trueblood & Dunitz, 1978; 
Hirshfeld, 1976). In particular, for molecules with 
internal translations, AU values along bonds or 
averages of AU values for chemically equivalent bonds 
have been used to determine the mean-square amplitude 
of internal translation (Chandrasekhar & Biirgi, 1984; 
Ammeter, Biirgi, Gamp, Meyer-Sandrin & Jensen, 
1979; Stebler & Bfirgi, 1987). Such analyses may now 
be interpreted in terms of the above discussion. 

Consider an atom undergoing internal translation 
along the bond attaching it to the main rigid body. Its 
positional coordinates can be expressed as r~ = (x ,  y~, 
z~) in the coordinate system with z parallel to this bond 
and x and y perpendicular to it. The atom to which it is 
bonded is located at r0--(x ], y~, Zo). Corresponding 
U's are 

U l = T -  (r I x S) + (.S x r l ) -  (r I x L x rl) 

- (r 1 x It) + ( f l x  rl) - t't" + z't + r't" 

U ° = T - - ( r  0x S ) + ( , S x  r 0 ) - ( r  0x L x  ro). (26) 

The difference between the two is 

A U (atom 1 - atom 0) 

= - - ( r x  S ) + ( S x A r ) - ( A r x  L x A r )  

- - ( r  l x l r ) + ( d x  r l ) + t z + r t + r r .  (27 )  

The component along the bond is 

A U (atom 1 - atom 0) 

= - - 2 ( / 2 ± z ) x ]  + 2 ( l l ± r ) y ]  + 2(t"r)  + (z2).  (28) 

If more than one rigid group is attached to the 
main rigid body, the symmetry consideration and 
approximations discussed above apply. For the 
centrosymmetric fragment RG]-MAIN--RG2 under- 
going symmetric stretching motion in a non- 
eentrosymmetric environment, the two AU's are (i 
= 1,2) 

AU, ~_ ¥ 2(12±r)x, +_ 2(l ,±r)y,  +_ 2(t"r)  + ( r  2) (29) 
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and their average is 

A--U _ (rz). (30) 

It is straightforward but somewhat tedious to show that 
this relationship also holds for the symmetric stretch 
deformations of M X  3 fragments with (approximate) D3n 
symmetry and MX4 fragments with (approximate) T a 
symmetry. 

Applications and examples 

The essential results of the above treatment have been 
used in the analysis of several problems. These include 
Jahn-Teller deformations in Cu H (Ammeter, Biirgi, 
Gamp, Meyer-Sandrin & Jensen, 1979; Stebler & 
Bfirgi, 1987) and Mn m complexes (Vedani, 1981), spin 
equilibria in FC H complexes (Chandrasekhar & Biirgi, 
1984) and Si/A1 disorder in alkali feldspars 
(Armbruster, Bfirgi, Kunz, Gnos, Br6nnimann & 
Lienert, 1989; Kunz & Armbruster, 1989). These 
investigations all follow the same scheme. From the 
given atomic coordinates and ADP's, bond distances 
and AU's were calculated and averaged with respect to 
all bonds in the polyhedra (dr: long distance, d~: short 
distance). In some structures the bond distances show 
patterns such as in (I) or (II) or (III) (for Cu and Mn), 
(IV) or (V) for the Fe TM complex, (VI) or (VII) for the 
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alumosilicate and the AU's are small, i.e. these 
structures are more or less ordered. In other structures 
the observed bond distances correspond to averages, 
e.g. [(I) + (IX) + (III)]/3, [(IV) + (V)]/2 and [(VI) + 
(VII)I/2, respectively and the dU's are large. In some of 
these examples, oscillation between the limiting struc- 
tures is fast compared with the time it takes to measure 
a Bragg intensity, in others there is static disorder. From 
the previous discussion we know that AU ~_ (r  2) where 
r is related to the displacement of a ligand atom 
necessary to go from (I) to (II) to (III), from (IV) to (V) 
or from (VI) to (VII). In the first example the ligands 
are displaced on average from their mean position by 
2(dt-ds)/3 with probability 1/3 and by - (d t -d~) /3  
with probability 2/3. The contribution to U(ligand) 

Table 1. Observed difference displacement parameters 
A Ufor various kinds o f  disorder, calculated A U'sfrom 

ordered structures 

AU(obs.)(A 2) AU(calc.)(A 2) References 
K2PbICu(NOz)tl 0.0156 (20) - -  (a) 

0.0207 (8) (a) 
TI2Pb[Cu(NOz) 6] 0.0159 - -  (a) 
K2Sn[Cu(NOz)t] - -  0.0169 (a), (e) 
K2Ba[Cu(NO061 - -  0.0159 (a), (e) 
[Co(NH3)6][MnF 6] 0.0144 (10) - -  (b) 
ICr(NH3)6][MnF 6] 0.0161 (10) - -  (b) 
K2NaMnF 6 - -  0.0088 (b), (e) 
MnF 3 - -  0.0151 (b), (e) 
[Fe(S2CNRz) 3] 0.0071 0.0056 (c), (,f) 
(Sio.sAl0.5)O , 0.0056 0.0042 (d), (g) 

References: (a) Ammeter ,  Biirgi, Gamp,  Meyer-Sandrin & Jensen 
(1979); (b) Vedani (1981); (c) Chandrasekhar  & Biirgi (1984); (d) 
Kunz & Armbruster  (1989); (e) calculated from 33% (I), 33% (II), 
33% (III); ( f )  calculated from 50% low-spin (IV), 50% high-spin 
(V); (g) calculated from 50% (VI), 50% (VII). 

along r and therefore to AU is then 2(dt--ds)2/9. 
Similarly, for the other two examples the correspond- 
ing quantities are (dt-ds)2/4. Since estimates of d t and 
d~ are available from ordered structures, ( r  2) can be 
estimated independently and compared to experimental 
values of AU (Table I). In general the agreement is 
good. The differences between observed and calculated 
values are partly due to neglect of the usual intra- 
molecular stretching vibrations in our estimate of (r2). 
These vibrations have been calculated from force- 
constant information to have mean-square amplitudes 
of about 20--30 x 10-4A 2 for the transition-metal 
complexes (Chandrasekhar & Biirgi, 1984). For SiO4 
and A104 tetrahedra they have been determined 
experimentally as ~ 5 x 10-4A z (Armbruster, Bfirgi, 
Kunz, Gnos, Br6nnimann & Lienert, 1989). The 
remaining differences contain experimental error and 
inadequacies in the model fitted to the diffraction data. 
They may also reflect the fact that observed and 
calculated quantities are not obtained from the same 
but only from chemically similar compounds. 

The model may be generalized for any degree of 
disorder. Here we consider two limiting structures with 
occupations p and ( I -p) ,  respectively. The average of 
the mean distances is d = p d  t + (1-p)d~, the mean 
contribution to (r  2) is p(dt -d)  z + (1-p)(d-d~)2= 
(dt-d)(d-ds).  Fig. 1 shows for the case of (Si/A1)O 4 
tetrahedra that this model accounts well for the 
experimental A U's. 

The importance of working with averaged AU and d 
values is shown by comparison of Fig. 1 with Fig. 2. 
The unaveraged values (Fig. 2) show much more 
scatter and hardly reveal a discernible trend. The 
improvement in Fig. 1 comes from the disappearance of 
coupling terms on averaging [(29) and (30)]. 

Hirshfeld (1976) has argued that AU's along bonds 
between first-row atoms should be less than about 
10 x 10 -4 A 2 and has used this criterion to test the 
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quality of the corresponding U's as determined from 
diffraction experiments. Later, it was found that this 
criterion had to be relaxed to 20-30 x 10 - 4 / ~  for bonds 
to octahedrally coordinated transition metals (Chan- 
drasekhar & Biirgi, 1984). Our present analysis allows 
a more detailed interpretation of this rule of thumb. 
Consider an octahedral complex M L  6 undergoing 
normal stretching vibrations, i.e. a lg, ee and t2, modes. 
From the arguments given above, the gerade modes 
contribute to ( r  2) but not to ( t"r)  whereas the 
ungerade modes contribute to both (r  z) and (t"r).  
Thus, 

2 2(t,tr)t,  A U  = (T2)a,e -t- (z'2)eg -t- (T) tzu  q- 

if M is placed at the origin. The last term may well be 
different for the same complex in different crystalline 
environments leading to different values of A U. An 
example is [Ru(H20)6] 2+ (Table 2), where AU for the 
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Fig. 1. Average values A---O (A z) in 138 (Si/Al)O4 tetrahedra as a 
function of (Si /AI)-O distance (A). Error bars + [a2(AU)I ~/z. 
[Outliers in the data set not included, see Kunz & Armbruster 
(1989).1 Dotted line: A---O= 1.124 [1.746 - d(Si,AI-O)] x 
[d(Si, AI -O)  - 1.608] (A 2) (quadratic least-squares curve 
excluding outliers); solid line: f r O =  [1.744 - d(Si,AI-O)] x 
[ d ( S i , A I - O ) -  1.607] (A z) (model). 
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Fig. 2. AU values (A 2) for individual (Si/A1)-O bonds as a function 
of (Si /AI)-O distance (A). 

Table 2. A Ufrom diffraction and spectroscopic experi- 
ments for  [Ru(H20)6] 2+ 

AU(A z) T(K) Method References 
Rbz[Ru(H20)J(SOa)z 0.0019 160 IR, Raman (a) 

0.0023 296 
Kz[Ru(H20)6](SO4) 2 0.0036 (2) 160 X-ray (b) 

0-0037 (4) 296 
[Ru(HzO)61(CH3C6H4SO3) z 0.0020 (7) RT X-ray (c) 

References: (a) calculated from force constants given by Bernhard 
& Ludi (1984); (b) Raselli & Biirgi (1988); (c) Bernhard, Biirgi, 
Hauser, Lehmann & Ludi (1982). 

tosylate salt agrees well with the value calculated from 
spectroscopic data, whereas AU for the  sulfate salt 
(measured at 160 and 296K and determined by 
high-order refinements) is clearly larger. If we accept 
the value from normal-coordinate analysis as an 
estimate of (r2), then for the sulfate salt (t"r)t2= 
- -7  x l0 -4A 2. Given the calculated contributions 
(r2)/2. of 10 x 10 -4 A 2 and an approximately isotropic 
T tensor with (t 2) _~ 125 x 10-4A 2, the correlation 
between overall translation and t2.-stretching motion is 
c =  (t"r)/((t2)(r2)t2) 1/2 ~_0.2. The corresponding 
correlation in the tosylate salt is much smaller. This 
difference may be related to different hydrogen-bonding 
interactions in the two crystal lattices. Systematic 
investigations could possibly shed light on such 
questions. In any case, this example shows how a 
combination of spectroscopic and diffraction data can 
provide additional information on the correlation 
between internal and overall molecular motion in a 
crystal. 

The above analysis of octahedral complexes depends 
on the fact that the ligand atoms are lighter than those 
of the metal and that therefore their mean-square 
displacement amplitudes are larger than those of the 
metal. A similar situation occurs with bonds to 
hydrogen. The formalism described here could serve as 
a basis for improved rigid-body/internal-motion refine- 
ments of neutron diffraction data for hydrocarbon 
molecules. 

Given the wealth of diffraction and spectroscopic 
data on atomic motion in molecules and crystals, the 
models described here and elsewhere may be useful in 
the transformation of almost meaningless lists of ADP's 
to chemically significant descriptions of molecular 
motion in crystals. 

The author thanks Dr Th. Armbruster and Mr M. 
Kunz for permission to reproduce Figs. 1 and 2 (Kunz 
& Armbruster, 1989) and Professor J. D. Dunitz and 
K. N. Trueblood for their comments on the manuscript. 
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Abstract 

Intermolecular hydrogen-bond parameters for amino 
acids and the corresponding peptides in the solid state 
are presented. Crystallographic data were retrieved 
from the Cambridge Structural Database. The inter- 
actions investigated include hydrogen bonds between 
the main chains as well as hydrogen-bonding side 
chains. The tendency for peptides to line up 'head to 
tail' in crystal structures is demonstrated. The mean 
hydrogen-bond angles in C ' ~ - C O O - . . . + H 3 N - C  '~ and 
~ C = O . . . H - N (  interactions are not significantly 
different, but there are higher relative frequencies of 
bonds with angles in the intervals 180-170 ° and 
150-110 ° for the former. The amino-acid histidine 
shows an exceptional ability to form short hydrogen 
bonds. In the protonated state, it is donor of two types 
of bonds with significantly different mean N . . . O  
distances [2.644 (17) and 2.730 (17)A].  A side-chain 
aspar ty l -  or g l u t a m y l - C O O -  group on average 
accepts 4.00 H atoms. These groups are better 
acceptors than main-chain carboxylate groups. 

Introduction 

Most researchers in the field of crystallography will 
have a fairly good idea which hydrogen-bond lengths to 
expect for different interactions. However, despite the 
rapidly increasing number of published structures and 
also papers on hydrogen bonds, a peptide chemist may 
well have difficulties telling whether an N . . . O  distance 

0108-7681/89/040390-06503.00 

of 2.80 A should be classified as long or short in a 
specific amino-acid or peptide structure. The present 
paper deals with this group of compounds and supplies 
acceptor. . .donor [r(Acc. . .Don)] and H. . .acceptor  
[r(H.. .Ace)] distances and donor -H . . . accep to r  angles 
[ a (Don-H. . .Acc ) ]  for most interactions likely to be 
encountered in crystals. 

Methodology 

The Cambridge Structural Database (CSD) presently 
(May 1988 release; Allen et al., 1979) contains 
information on more than 67 000 organic compounds. 
A subtile of crystallographic data for 749 amino-acid 
and peptide structures (chemical class 48) was 
generated from the database.* Only entries with 
diffractometer-measured intensity data, R factors < 
0.075 and experimentally determined H-atom positions 
were accepted. The subtile was then searched for 
interactions between hydrogen-bond donors and accep- 
tors of the main chain. Finally, amino-acid residues 
with a donor and/or acceptor group in the side chain 
(all unsubstituted) were treated one by one in order to 
obtain parameters for different types of hydrogen 

* A list of references for the 749 structures that contain the 
interactions described in this article has been deposited with the 
British Library Document Supply Centre as Supplementary 
Publication No. SUP 51751 (24 pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH 1 2HU, England. 
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